Part Number Hot Search : 
MAX15 NCP15 15012 CS82C50A 2N5400 BAV70 DBS10 CFB0303
Product Description
Full Text Search
 

To Download MRF275 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SEMICONDUCTOR TECHNICAL DATA
Order this document by MRF275L/D
RF Power Field-Effect Transistor
N-Channel Enhancement-Mode
Designed for broadband commercial and military applications using single ended circuits at frequencies to 500 MHz. The high power, high gain and broadband performance of this device makes possible solid state transmitters for FM broadcast or TV channel frequency bands. * Guaranteed Performance @ 500 MHz, 28 Vdc Output Power -- 100 Watts Power Gain -- 8.8 dB Typ Efficiency -- 55% Typ * 100% Ruggedness Tested At Rated Output Power * Low Thermal Resistance * Low Crss -- 17 pF Typ @ VDS = 28 Volts
G
The RF MOSFET Line
MRF275L
100 W, 28 V, 500 MHz N-CHANNEL BROADBAND RF POWER FET
D
CASE 333-04, STYLE 2 S
MAXIMUM RATINGS
Rating Drain-Source Voltage Gate-Source Voltage Drain Current -- Continuous Total Device Dissipation @ TC = 25C Derate above 25C Storage Temperature Range Operating Junction Temperature Symbol VDSS VGS ID PD Tstg TJ Value 65 20 13 270 1.54 - 65 to +150 200 Unit Vdc Vdc Adc Watts W/C C C
THERMAL CHARACTERISTICS
Characteristic Thermal Resistance, Junction to Case Symbol RJC Max 0.65 Unit C/W
ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS
Drain-Source Breakdown Voltage (VGS = 0, ID = 50 mA) Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0) Gate-Body Leakage Current (VGS = 20 V, VDS = 0) V(BR)DSS IDSS IGSS 65 -- -- -- -- -- -- 2.5 1.0 Vdc mAdc Adc
NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
REV2
1
ELECTRICAL CHARACTERISTICS -- continued (TC = 25C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
ON CHARACTERISTICS
Gate Threshold Voltage (VDS = 10 V, ID = 100 mA) Drain-Source On-Voltage (VGS = 10 V, ID = 5.0 A) Forward Transconductance (VDS = 10 V, ID = 2.5 A) VGS(th) VDS(on) gfs 1.5 0.5 3.0 2.5 0.9 3.75 4.5 1.5 -- Vdc Vdc mhos
DYNAMIC CHARACTERISTICS
Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Ciss Coss Crss -- -- -- 135 140 17 -- -- -- pF pF pF
FUNCTIONAL CHARACTERISTICS
Common Source Power Gain (VDD = 28 Vdc, Pout = 100 W, f = 500 MHz, IDQ = 100 mA) Drain Efficiency (VDD = 28 Vdc, Pout = 100 W, f = 500 MHz, IDQ = 100 mA) Electrical Ruggedness (VDD = 28 Vdc, Pout = 100 W, f = 500 MHz, IDQ = 100 mA, VSWR 10:1 at all Phase Angles) Gps No Degradation in Output Power 7.5 50 8.8 55 -- -- dB %
C12 +VGG C1 R1 R2 C2 C11 RFC2
C13 +28 V RFC3 C14 + C15
RFC1 C10 Z3 C3 Z1 C4 C5 C6 Z2 DUT C7 C8 C9 Z4 RF OUTPUT
RF INPUT
C1, C11, C14 C2 C3, C10 C4, C6, C8, C9 C5 C7 C12, C13 C15
0.1 F, Ceramic Capacitor 240 pF, ATC Type Chip Capacitor 270 pF, ATC Type Chip Capacitor 1-20 pF, Trimmer Capacitor, Johansen 24 pF, Mini-Unelco Type Capacitor 24 pF, Mini-Unelco Type Capacitor 680 pF, Feedthru Capacitors 10 F, 50 V, Electrolytic Capacitor
RFC1 RFC2, RFC3 Z1, Z2, Z3 Z4 Board Material
8 Turns AWG #18, 0.25 I.D., Enameled Ferroxcube VK200 19/4B 0.250 x 0.800, Microstrip Line 0.250 x 0.400, Microstrip Line 0.250 x 1.25, Microstrip Line 0.062 Glass Teflon(R), 2 oz. Copper, Double Clad Copper Board, r = 2.55
Figure 1. 500 MHz Test Circuit
REV2
2
TYPICAL CHARACTERISTICS
160 f = 225 MHz Pout , OUTPUT POWER (WATTS) 400 MHz 120 100 80 60 40 20 0 0 2 4 8 6 10 14 12 Pin, INPUT POWER (WATTS) 16 18 20 VDD = 28 V IDQ = 100 mA 500 MHz Pout , OUTPUT POWER (WATTS) 140 100 90 80 70 60 50 40 30 20 10 0 -10 -8 VDS = 28 V IDQ = 100 mA Pin = Constant f = 500 MHz -6 -4 -2 0 VGS, GATE-SOURCE VOLTAGE (VOLTS) 2 4
Figure 2. Output Power versus Input Power
Figure 3. Output Power versus Gate Voltage
10 9 I D , DRAIN CURRENT (AMPS) 8 7 6 5 4 3 2 1 0 0 0.5 1.5 2.5 3.5 1 3 4 2 VGS, GATE-SOURCE VOLTAGE (VOLTS) 4.5 5 Pout , OUTPUT POWER (WATTS) VDS = 10 V VGS(th) = 2.5 V
140 120 100 80 60 40 20 0 12 10 W 6W IDQ = 100 mA f = 500 MHz Pin = 13.5 W
14
24 22 16 18 20 VDD, SUPPLY VOLTAGE (VOLTS)
26
28
Figure 4. Drain Current versus Gate Voltage (Transfer Characteristics)
Figure 5. Output Power versus Supply Voltage
160 Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) 140 120 100 80 60 40 20 0 12 14 16 18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 28 10 W 6W IDQ = 100 mA f = 400 MHz Pin = 14 W
160 140 120 100 80 2W 60 40 20 0 12 14 16 18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 28 4W IDQ = 100 mA f = 225 MHz Pin = 8 W
Figure 6. Output Power versus Supply Voltage
Figure 7. Output Power versus Supply Voltage
REV2
3
TYPICAL CHARACTERISTICS
1000 100
Coss C, CAPACITANCE (pF) 100 Ciss
I D , DRAIN CURRENT (AMPS)
10
Crss 10 VGS = 0 V f = 1.0 MHz 1 0 5 15 20 25 10 VDS, DRAIN-SOURCE VOLTAGE (VOLTS) 30
TC = 25C 1 1 10 VDS, DRAIN-SOURCE VOLTAGE (VOLTS) 100
Figure 8. Capacitance versus Drain-Source Voltage
Figure 9. DC Safe Operating Area
REV2
4
f = 500 MHz Zin 400 225 Zo = 10
400
f = 500 MHz ZOL* 225 Zo = 10
VDD = 28 V, IDQ = 100 mA, Pout = 100 W f Zin (MHz) Ohms 225 400 500 1.1 - j1.7 1.08 - j1.5 1.0 - j0.5
VDD = 28 V, IDQ = 100 mA, Pout = 100 W f ZOL* (MHz) Ohms 225 400 500 1.6 - j1.3 0.9 - j0.5 1.0 - j0.2
ZOL* = Conjugate of the optimum load impedance into which the device operates at a given output power, voltage and frequency.
Figure 10. Series Equivalent Input/Output Impedance
REV2
5
RFC1 R1 BIAS C4 C1 RF INPUT L1 C2 C3 C6 C7 C8 C5 R2 L4 L2 L3 C9 RF OUTPUT C10 C11 + +28 Vdc
DUT
C1, C2, C8 C3, C7 C4 C5 C6 C9 C10 C11
Arco 463 or Equivalent 25 pF, Unelco Capacitor 1000 pF, Chip Capacitor 0.01 F, Chip Capacitor 250 pF, Unelco Capacitor Arco 462 or Equivalent 1000 pF, ATC Chip Capacitor 10 F, 100 V, Electrolytic Capacitor
L1
Hairpin Inductor #18 Wire
L3
Hairpin Inductor #16 Wire
0.32 0.15 L2 Stripline Inductor 0.200 x 0.500 0.2 L4 RFC1 R1 R2
0.45
2 Turns #16 Wire, 5/16 ID VK200-4B 1.0 k, 1/4 W Resistor 100 Resistor
Figure 11. 225 MHz Test Circuit
L3
C11
C12
C13
C14 +v
BIAS C9 .01 mf RF INPUT GND R2 L2 R1 Z2 C1 L1 Z1 C2 C3 C4 DUT Z3 C8 RF OUTPUT
C5
C6
C7
C1, C8 C2, C4, C6, C7 C3 C5 C9, C12 C11, C14 C13
270 pF, ATC Chip Capacitor 1.0 - 20 pF, Trimmer Capacitor 15 pF, Mini Unelco Capacitor 47 pF, Mini Unelco Capacitor 0.1 F, Ceramic Capacitor 680 pF, Feed Thru Capacitor 50 F, Tantalum Capacitor
L1
Hairpin Inductor #18 Wire
0.25 0.4 L2 L3 12 Turns #18 Wire, 0.450 ID Ferroxcube VK200 20/4B
10 k, 1/4 W Resistor 1 k, 1/4 W Resistor 1.5 k, 1/4 W Resistor 0.950 x 0.250, Microstrip Line 1.25 x 0.250, Microstrip Line 0.300 x 0.250, Microstrip Line Board Material 0.062 Teflon(R), Fiberglass, 1 oz. Copper, Clad Both Sides, r = 2.56
R1 R2 R3 Z1 Z2 Z3
Figure 12. 400 MHz Test Circuit
REV2
6
+
RFC2 C12 C1 R1 C2 BEADS C11 RFC1 R2 C3 C5 C7 C10 C14 RFC3 C13
C15
+
+
C4
C6
C8
C9
(Not to Scale)
Figure 13. MRF275L Component Location (500 MHz)
MRF275L
(Scale 1:1)
Figure 14. MRF275L Test Circuit Photomaster (Reduced 18% in printed data book, DL110/D)
REV2
7
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Table 1. Common Source S-Parameters (VDS = 12.5 V, ID = 4.5 A)
S21 S12 |S21| 6.22 4.28 3.65 2.99 2.54 2.18 1.94 1.77 1.57 1.45 1.34 1.26 1.19 1.09 1.01 0.956 0.912 0.860 0.816 0.779 0.717 0.709 0.674 0.645 0.627 0.608 0.580 0.569 0.539 0.512 0.483 0.477 0.466 0.459 0.441 0.428 0.417 0.409 0.390 0.377 0.369 0.368 |S12| f MHz 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 S11 S22 |S11| |S22| 0.936 0.938 0.937 0.937 0.938 0.938 0.939 0.939 0.939 0.940 0.940 0.940 0.940 0.941 0.941 0.941 0.941 0.942 0.942 0.943 0.943 0.943 0.944 0.944 0.944 0.945 0.946 0.946 0.946 0.947 0.948 0.947 0.947 0.947 0.948 0.949 0.949 0.949 0.950 0.950 0.950 0.951 -176 -178 -178 -179 -179 -179 -180 -180 180 180 179 179 179 179 179 179 178 178 178 178 177 177 177 177 177 176 176 176 176 175 175 175 175 175 174 174 174 174 173 173 173 173 87 87 83 83 81 80 78 77 77 74 75 72 71 70 69 68 67 65 64 63 60 61 60 58 57 58 54 56 55 54 51 52 51 51 50 49 49 47 46 45 45 47 0.010 0.010 0.010 0.011 0.011 0.012 0.012 0.013 0.015 0.015 0.016 0.016 0.017 0.019 0.019 0.021 0.022 0.022 0.023 0.025 0.027 0.026 0.026 0.028 0.030 0.032 0.031 0.033 0.033 0.035 0.037 0.038 0.039 0.040 0.043 0.044 0.045 0.044 0.046 0.047 0.050 0.052 21 24 29 34 39 42 44 47 50 54 57 58 57 58 62 64 65 65 65 66 67 68 70 69 70 70 71 71 72 71 72 72 75 73 71 72 74 77 74 71 72 74 0.944 0.930 0.922 0.920 0.917 0.913 0.909 0.913 0.916 0.914 0.935 0.943 0.951 0.943 0.940 0.948 0.957 0.941 0.931 0.922 0.965 0.927 0.924 0.930 0.933 0.940 0.941 0.945 0.953 0.952 0.927 0.921 0.929 0.963 0.968 0.937 0.907 0.912 0.962 0.971 0.948 0.953 -179 -177 179 179 179 179 180 -180 -179 179 180 180 178 179 180 179 180 178 178 178 177 176 178 179 178 177 175 176 178 177 176 176 178 177 175 175 176 177 175 174 176 176
REV2
8
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Table 1. Common Source S-Parameters (VDS = 12.5 V, ID = 4.5 A) (continued)
S11 S21 S12 |S21| |S12| f MHz 450 460 470 480 490 500 600 700 800 900 1000 S22 |S11| |S22| 0.951 0.952 0.952 0.953 0.953 0.954 0.957 0.965 0.967 0.980 0.986 172 172 172 172 171 171 168 165 160 156 151 0.371 0.347 0.331 0.323 0.317 0.306 0.267 0.224 0.219 0.214 0.218 42 44 43 43 41 41 35 35 32 33 34 0.053 0.053 0.053 0.056 0.059 0.061 0.069 0.090 0.099 0.114 0.146 76 72 71 71 72 74 77 70 67 69 67 0.943 0.965 0.933 0.936 0.965 0.963 0.941 0.958 0.937 0.943 0.955 175 172 173 173 173 173 171 169 164 164 162
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Table 2. Common Source S-Parameters (VDS = 24 V, ID = 4.5 A)
S21 S12 |S21| 9.08 6.29 5.31 4.35 3.70 3.16 2.81 2.55 2.27 2.08 1.92 1.78 1.68 1.53 1.42 1.34 1.28 1.19 1.12 1.06 0.988 0.960 0.910 0.866 0.838 0.803 0.766 |S12| f MHz 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290
REV2
S11
S22
|S11|
|S22|
0.914 0.918 0.918 0.917 0.919 0.919 0.920 0.921 0.922 0.923 0.923 0.924 0.925 0.926 0.927 0.928 0.929 0.930 0.931 0.932 0.933 0.934 0.934 0.935 0.936 0.937 0.939
-174 -176 -177 -177 -178 -178 -179 -179 -179 -179 -180 -180 -180 180 180 180 179 179 179 179 179 178 178 178 178 177 177
87 86 82 82 79 77 75 74 73 70 70 67 65 64 62 62 60 58 56 55 53 53 52 50 49 49 46
0.011 0.011 0.011 0.012 0.012 0.013 0.013 0.014 0.014 0.015 0.016 0.017 0.018 0.018 0.018 0.020 0.021 0.022 0.022 0.023 0.024 0.025 0.026 0.026 0.027 0.029 0.030
19 22 26 29 32 37 42 46 47 49 51 55 58 60 61 61 63 65 67 68 67 69 73 74 74 71 72
0.882 0.876 0.871 0.871 0.865 0.857 0.851 0.863 0.876 0.867 0.880 0.880 0.904 0.901 0.900 0.901 0.906 0.892 0.902 0.903 0.931 0.889 0.877 0.895 0.908 0.923 0.915
-178 -176 180 -179 -179 -179 -180 -179 -178 -179 -178 -179 179 -180 -179 -179 -179 179 178 179 179 179 180 180 180 179 177
9
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Table 2. Common Source S-Parameters (VDS = 24 V, ID = 4.5 A) (continued)
S11 S21 S12 |S21| |S12| f MHz 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 600 700 800 900 1000 S22 |S11| |S22| 0.939 0.939 0.940 0.941 0.942 0.943 0.943 0.943 0.944 0.944 0.946 0.948 0.948 0.947 0.947 0.948 0.951 0.952 0.951 0.950 0.950 0.957 0.965 0.966 0.979 0.981 177 177 176 176 176 176 175 175 175 175 174 174 174 174 173 173 173 173 172 172 172 168 164 160 156 150 0.744 0.702 0.660 0.623 0.613 0.599 0.585 0.556 0.534 0.512 0.503 0.482 0.464 0.450 0.440 0.445 0.414 0.397 0.387 0.376 0.361 0.287 0.231 0.216 0.205 0.206 46 46 45 41 42 41 41 39 38 38 37 36 35 36 36 32 32 32 33 31 31 24 24 23 27 29 0.032 0.032 0.031 0.031 0.035 0.039 0.040 0.037 0.035 0.037 0.043 0.049 0.047 0.040 0.039 0.047 0.057 0.057 0.050 0.042 0.044 0.073 0.091 0.091 0.112 0.146 76 81 81 75 71 78 83 85 80 73 76 81 87 88 79 73 75 86 95 90 74 75 70 67 69 58 0.907 0.908 0.913 0.909 0.910 0.905 0.913 0.924 0.922 0.907 0.906 0.944 0.940 0.912 0.947 0.944 0.959 0.913 0.908 0.941 0.963 0.932 0.952 0.928 0.930 0.947 178 180 178 177 178 -180 179 176 175 176 179 177 176 176 176 177 174 176 175 174 175 172 169 163 164 162
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Table 3. Common Source S-Parameters (VDS = 28 V, ID = 4.5 A)
S21 S12 |S21| 9.76 6.73 5.69 4.66 3.97 3.39 3.01 2.73 2.42 2.22 2.05 1.90 1.79 |S12| f MHz 30 40 50 60 70 80 90 100 110 120 130 140 150 S11 S22 |S11| |S22| 0.910 0.913 0.913 0.913 0.915 0.916 0.916 0.917 0.918 0.919 0.920 0.921 0.922 -173 -175 -176 -177 -177 -178 -178 -178 -179 -179 -179 -179 -180 87 86 81 81 78 76 74 73 72 68 68 66 64 0.011 0.011 0.011 0.012 0.012 0.012 0.012 0.013 0.014 0.014 0.014 0.014 0.015 17 17 21 26 31 33 34 36 41 48 52 52 51 0.872 0.860 0.849 0.846 0.853 0.858 0.853 0.851 0.849 0.853 0.879 0.894 0.898 -177 -174 -179 -178 -179 -178 -178 -177 -177 -178 -178 -178 -178
REV2
10
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Table 3. Common Source S-Parameters (VDS = 28 V, ID = 4.5 A) (continued)
S11 S21 S12 |S21| 1.63 1.50 1.42 1.35 1.26 1.19 1.12 1.04 1.01 0.955 0.912 0.882 0.842 0.798 0.770 0.731 0.690 0.655 0.639 0.613 0.601 0.577 0.555 0.531 0.518 0.492 0.472 0.462 0.455 0.460 0.424 0.400 0.389 0.382 0.367 0.284 0.226 0.211 0.197 0.200 |S12| f MHz 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 600 700 800 900 1000 S22 |S11| |S22| 0.923 0.924 0.925 0.926 0.928 0.929 0.930 0.932 0.932 0.933 0.934 0.936 0.936 0.938 0.939 0.939 0.941 0.942 0.942 0.942 0.943 0.945 0.946 0.947 0.946 0.947 0.948 0.950 0.951 0.951 0.950 0.950 0.952 0.954 0.955 0.958 0.967 0.967 0.979 0.978 -180 -180 180 180 179 179 179 179 179 178 178 178 178 177 177 177 177 176 176 176 175 175 175 175 174 174 174 173 173 173 173 172 172 172 172 168 164 160 156 150 63 61 60 58 56 54 53 51 51 49 47 46 46 43 44 43 42 39 40 39 38 36 35 35 34 33 32 32 32 30 30 29 29 27 27 22 22 22 26 29 0.016 0.017 0.019 0.019 0.019 0.020 0.022 0.024 0.024 0.024 0.025 0.027 0.029 0.028 0.030 0.032 0.035 0.036 0.035 0.036 0.040 0.045 0.047 0.045 0.042 0.044 0.049 0.056 0.058 0.054 0.050 0.053 0.063 0.071 0.069 0.071 0.088 0.096 0.116 0.139 53 58 62 64 63 62 64 67 69 70 70 71 72 71 71 72 74 76 75 75 71 71 74 79 80 72 67 71 78 82 73 65 65 72 80 80 71 67 69 67 0.880 0.890 0.904 0.922 0.914 0.897 0.881 0.907 0.892 0.910 0.912 0.904 0.901 0.920 0.930 0.934 0.939 0.895 0.892 0.906 0.945 0.960 0.928 0.893 0.892 0.948 0.960 0.936 0.945 0.920 0.951 0.937 0.941 0.960 0.954 0.935 0.950 0.929 0.929 0.944 -177 -178 -178 -179 -179 -179 -179 180 179 -180 -178 -178 -180 177 178 -179 -180 180 179 -180 179 178 178 178 179 176 176 179 179 177 173 174 175 175 176 172 169 164 165 163
REV2
11
RF POWER MOSFET CONSIDERATIONS
MOSFET CAPACITANCES The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain (Cgd), and gate-to- source (Cgs). The PN junction formed during the fabrication of the FET results in a junction capacitance from drain-to- source (Cds). These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The Ciss can be specified in two ways: 1. Drain shorted to source and positive voltage at the gate. 2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.
DRAIN Cgd GATE Cds Cgs Ciss = Cgd + Cgs Coss = Cgd + Cds Crss = Cgd
Using a resistor to keep the gate-to-source impedance low also helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate-drain capacitance. If the gate-to-source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate-threshold voltage and turn the device on. HANDLING CONSIDERATIONS When shipping, the devices should be transported only in antistatic bags or conductive foam. Upon removal from the packaging, careful handling procedures should be adhered to. Those handling the devices should wear grounding straps and devices not in the antistatic packaging should be kept in metal tote bins. MOSFETs should be handled by the case and not by the leads, and when testing the device, all leads should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it is designed for, soldering should be done with a grounded iron. DESIGN CONSIDERATIONS The MRF275L is a RF power N-channel enhancement mode field-effect transistor (FETs) designed for HF, VHF and UHF power amplifier applications. M/A-COM FETs feature a vertical structure with a planar design. M/A-COM Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal. DC BIAS The MRF275L is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF275L was characterized at IDQ = 100 mA, each side, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters. The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate bias system. GAIN CONTROL Power output of the MRF275L may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems.
SOURCE
DRAIN CHARACTERISTICS One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, VDS(on), occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, VDS(on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device. GATE CHARACTERISTICS The gate of the FET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high -- on the order of 109 ohms -- resulting in a leakage current of a few nanoamperes. Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, VGS(th). Gate Voltage Rating -- Never exceed the gate voltage rating. Exceeding the rated VGS can result in permanent damage to the oxide layer in the gate region. Gate Termination -- The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup. Gate Protection -- These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended.
REV2
12
PACKAGE DIMENSIONS
-A- L D
2 1 3
Q
2 PL
0.13 (0.005) K -B- K
M
TA
M
B
M
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. DIM A B C D E F G H J K L N P Q INCHES MIN MAX 0.965 0.985 0.390 0.410 0.250 0.290 0.190 0.210 0.095 0.115 0.215 0.235 0.725 BSC 0.155 0.175 0.004 0.006 0.195 0.205 0.740 0.770 0.415 0.425 0.390 0.400 0.120 0.135 SOURCE DRAIN SOURCE GATE MILLIMETERS MIN MAX 24.51 25.02 9.91 10.41 6.73 7.36 4.83 5.33 2.42 2.92 5.47 5.96 18.42 BSC 3.94 4.44 0.10 0.15 4.95 5.21 18.80 19.55 10.54 10.80 9.91 10.16 3.05 3.42
P
4
F G
J H
N
E C -T-
SEATING PLANE
STYLE 2: PIN 1. 2. 3. 4.
CASE 333-04 ISSUE E
Specifications subject to change without notice. n North America: Tel. (800) 366-2266, Fax (800) 618-8883 n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298 n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020
Visit www.macom.com for additional data sheets and product information.
REV2
13


▲Up To Search▲   

 
Price & Availability of MRF275

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X